Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata
نویسندگان
چکیده
Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.
منابع مشابه
A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata.
Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive gene...
متن کاملThe Effect of NF-κB Signalling Pathway on Expression and Regulation of Nacrein in Pearl Oyster, Pinctada fucata
Nacrein is the first identified and widely investigated molluscan matrix protein and is considered to play an important role in the shell formation of the pearl oyster, Pinctada fucata. Here, we investigate the effect of the NF-κB signalling pathway on Nacrein gene expression in P. fucata to elucidate the mechanisms involved in shell formation. Inhibition of NF-κB signalling decreased Nacrein p...
متن کاملDeep Sequencing of ESTs from Nacreous and Prismatic Layer Producing Tissues and a Screen for Novel Shell Formation-Related Genes in the Pearl Oyster
BACKGROUND Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell form...
متن کاملMolecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas
The shell of the pearl oyster (Pinctada fucata) mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. I...
متن کاملGonadal changes and serum steriod levels during the annual reproductive cycle of the pearl oyster Pinctada fucata gould
The annual reproductive cycle of peal oyster Pinctada fucata was characteised by documenting gonadal development and changes in serum levels of estradiol-17b (E2), testosterone (T) and progesterone (P) in the wild bivalve caught in natural beds in the Persian Gulf throughout the year. Bivalve populations employed in this study spawn in June-July and November-December. The pearl oysters had grou...
متن کامل